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ORIGIN AND MIGRATION OF T-CELL
PROGENITORS DURING ONTOGENY

Comparative developme,ntal studies are very informa-

tive with regard to the evolution of the immune sys-
tem in vertebrates. The avian model offers several

advantages for the study of T cell development: (i) T
and B cells undergo differentiation in specialized cen-

tral lymphoid organs, T cells in the thymus, and B
cells in the bursa of Fabricius, (ii) a large number of

precisely staged embryos can be easily obtained, (iii)
the embryo is large enough for experimental manipu-
lation, and (iv) the general scheme of Tcell ontogeny
is similar in birds and mammals with the exception of
the fetal liver which is not hemopoietic in birds. Stud-

ies performed in chick-quail chimeras show that the

thymus of birds is colonized in three waves during
embryogenesis and just after hatching. These waves

start at day 6, day 12 and day 18 of embryonic devel-

opment (E6, El2, El8) respectively (Coltey et al.,
1989; Coltey et al., 1987; Jotereau and Le Douarin,

1982). The duration of these waves is of around 2

days and they are separated by periods refractory for

thymus colonization. T-cell progenitors first originate
from para-aortic mesoderm at the level of the ducts of

Cuvier in E3 chicken embryos (Cormier and Dieter-

len-Lievre, 1988; Dieterlen-Lievre et al., 1996;
Pardanaud et al., 1996). During the second and third

wave of thymus colonization, T cell progenitors are

found in the bone marrow where they express various

markers, some of which are adhesion molecules,
including HEMCAM, BEN, CD44, thrombomucin

and IIb3 integrin.

The available evidence to date suggests that hemo-

poietic progenitors emerge in situ at three locations

during chicken embryogenesis: the yolk sac, the aor-

tic foci, and the allantois (Caprioli et al., 1998; Corm-
ier et al., 1986; Dieterlen-Lievre and Martin, 1981;
Moore and Owen, 1967). The other hemopoietic
Anlagen that successively harbor progenitors during
embryogenesis, such as the bone marrow, the spleen
and the thymus may simply provide an environment
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FIGURE Sites of emergence of hemopoietic progenitor cells during embryogenesis. Comparison between mouse and chicken

where lymphoid progenitors, presumably circulating
in the blood-stream, settle and give rise to a differenti-
ated progeny. The first T-cell progenitors that are

transported close to the thymus leave the blood circu-
lation through the jugular vein. They enter the non

vascularized thymus Anlage through the capsule
(Dunon et al., 1993; Savagner et al., 1986). After vas-
cularization of the thymus, progenitors may then enter

at the corticomedullary junction or between thymic
lobules (Dunon et al., 1997). When T-cell progenitors
enter the perivascular space after invasive migration
through the pericytic/epithelial basal membrane, they
interact with the thymic microenvironment and
undergo differentiation (Fig. 1). Based on a sensitive
in vivo thymus reconstitution assay (see below), the
number and frequency of T-cell progenitors in periph-
eral blood, para-aortic foci, bone marrow, and spleen
have been quantified during ontogeny. The progeni-
tors of the first wave colonize the embryonic thymus
stem from the para-aortic foci and those of the second
and third waves originate from bone marrow (Dunon
et al., 1999). During these latter waves, T cell progen-
itors are encountered in the bone marrow and spleen.
However, the spleen, in contrast to the bone marrow,
contains progenitors which are unable to home to the

thymus via the blood stream. Each wave of thymus
colonization correlates with the presence of a peak of

progenitors in peripheral blood, whereas almost no

progenitors are detected in the blood during the peri-
ods defined previously as refractory for thymus colo-
nization (Fig. 2). Moreover, intravenous injection of
T cell progenitors show that they are able to home
into the thymus without delay even during the
so-called refractory periods. These findings demon-
strate that the blood delivery of T cell progenitors
plays a major role in the thymus colonization kinetics

during embryogenesis (Dunon et al., 1999).

IDENTIFICATION OF T-CELL PROGENITORS

Embryonic T-cell progenitors are identified by their

ability to differentiate into T cells after intrathymic
injection. In brief, blood cells or FACS sorted bone mar-

row cells are injected into thymi of irradiated congenic
animals. The degree of chimerism of the host thymus is

subsequently measured and correlated with the number
of donor progenitors initially injected. This assay has
been used to identify T cell progenitors expressing new
cell surface molecules. Some of these molecules are
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FIGURE 2 Quantification of T-cell progenitors in chicken embryonic blood

involved in adhesion and/or signal transduction. In the
chicken, they include c-kit, HEMCAM, BEN, cIIb[3,
ChT1, MHC class II, CD44, and thrombomucin

(Fig. 3). The VEGFRII positive cells from the meso-

derm of chicken embryos at the gastrulation stage, the
so called hemangioblasts (Eichmann et al., 1997) are

not able to give rise to mature T cells in this system (C.
Ody unpublished data), indicating the requirement for
an additional maturation step, before they are able to

differentiate in the thymic environment.

T-cell Progenitors Surface Markers

C-kit

The c-kit protein has five Ig like domains, linked to a

transmembrane and a tyrosine kinase domain, and is

closely related to the Platelet derived growth factor

receptor. This 140 to 160 kDa protein becomes acti-
vated upon occupancy by its specific ligand, stem cell
factor (SCF) or by antibody crosslinking. This tyro-
sine kinase receptor was among the first molecules to

be described on hemopoietic cells in mammals, and

transplantation experiments with c-kit positive bone
marrow cells clearly demonstrate the presence of c-kit

on primitive hemopoietic progenitors (Morrison et

al., 1997; Visser et al., 1993). Recently, c-kit has also
been found on pro-T cells in mammals (Di Santo and
Rodewald, 1998). In the chicken, the less primitive
T-cell progenitors, which are able to differentiate in

the thymic environment, are also c-kit positive popu-
lation (Katevuo et al., 1999; Vainio et al., 1996). The
critical role of this receptor in hemopoiesis is well
established following the identification of the genetic
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defect in the W and SI mouse strains: these mice have
mutations in either the c-kit receptor or in its ligand
(SCF), and they display a wide range of hemopoietic
disorders not selectively affecting the T cell compart-
ment (Chabot et al., 1988; Geissler et al., 1981;
Huang et al., 1990). So, c-kit mutations are not suffi-
cient to suppress T cell development and it is neces-

sary to cointroduce a mutation in the common

cytokine receptor , chain to fully abrogate T cell
development. These mutations selectively affect the T

cell compartment leaving the B cell compartment
only mildly diminished (Rodewald et al., 1997)). The
chain is common to many interleukin receptors, but

among these, only the IL-7 receptor seem important,
since its knockout induces a reduction in thymic cel-
lularity comparable to that observed in the chain
knock out mouse (Peschon et al., 1994). This corre-
lates with the presence of the IL-7 receptor on the
common lymphoid progenitor cell in murine bone
marrow (Kondo et al., 1997).
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HEMCAM

HEMCAM (hemopoietic cell adhesion molecule) is

an adhesion molecule belonging to the immunoglobu-
lin superfamily with a V-V-C2-C2-C2 Ig domain
structure (Vainio et al., 1996). HEMCAM positive
bone marrow cells coexpressing c-kit can differentiate

into T, myeloid and erythroid cells in vitro, suggesting
that multipotent hemopoietic stem cells express this

adhesion molecule. HEMCAM expression is not

restricted to cells of the hemopoietic lineages, since

this molecule is also expressed at high levels on

endothelial cells in many tissues, on myocytes, and on

the epithelial cells of the bursa of Fabricius. HEM-
CAM is identical to the chicken gicerin, a molecule
involved in neurite outgrowth and Wilm’s kidney
tumor progression (Taira et al., 1994; Takaha et al.,
1995). It is also homologous to MUC18/MCAM a

human molecule involved in melanoma progression
and metastasis (Johnson et al., 1996; Lehmann et al.,
1989). There are three mRNA splice variants, one

with a short cytoplasmic tail, another with a long tail

and the third one lacking the transmembrane and

cytoplasmic regions. The two transmembrane HEM-
CAM/gicerin isoforms tre detected by immunopre-
cipitation and are differentially expressed in the

developing nervous and immune systems. Initially,
HEMCAM/gicerin was identified as a binding protein
for the neurite outgrowth factor (NOF) a molecule of
the laminin family (Hayashi and Miki, 1985; Taira et

al., 1994). In addition, HEMCAM promotes cell-cell
adhesion probably through both heterophilic and

homophilic binding. Several studies now suggest that
HEMCAM might also transduce a signal (Anfosso et

al., 1998) which could regulate cell adhesion on lam-
inin-1 (Alais et al., in preparation).

tightly developmentally regulated in several cell types
of the nervous and hemopoietic systems and in certain

epithelia. BEN is expressed on hemopoietic cells as

early as E7 and by E9 in the thymus (Corbel et al.,
1992). In the spleen BEN expression parallels the

myelopoietic activity. During embryonic life and after

hatching, 30-60% of thymocytes are BEN positive. In
the embryo, most of the BEN positive thymocytes do
not express CD3 and may be considered as undiffer-

entiated T-cells. BEN is also present on bone marrow

cells including the c-kit positive subpopulation, which
contains T-cell progenitors and stem cells. In the E13

embryo, all the c-kit positive cells are also BEN posi-
tive (Fig. 4). In the adult chicken, the population of

BEN-positive cells includes myeloid and erythroid
progenitor cells. BEN expression is lost as progenitor
cells proliferate and differentiate to develop into

mature colonies in vitro. BEN is required for in vitro

myeloid but not erythroid colony formation as shown

by the effect of anti-BEN monoclonal antibody treat-

ment (Corbel et al., 1996). BEN interacts in a

homophilic way and these interactions are not

affected by its glycosylation status. In addition,
Ng-CAM has been suggested as ligand for BEN
(DeBernardo and Chang, 1996). ALCAM, the mam-
malian homologue of BEN, which is expressed on

activated T lymphocytes, has been identified as a

CD6 ligand (Bowen et al., 1995). ALCAM-CD6
interactions are very likely involved in thymo-
cyte-thymic epithelium interactions as well as in the

binding of T and B cells to activated leukocytes. BEN
might play a role in the migration of T-cell progeni-
tors from the bone marrow to the thymus. As sug-
gested by the in vitro inhibition studies, it may also be
involved in the first step of T cell maturation possibly
through interaction with the thymic epithelium.

BEN

BEN (bursal epithelium and neurons) a surface glyco-
protein also known as DM-GRASP and SC1 belongs
to the same subfamily of adhesion molecules as

HEMCAM, exhibiting a V-V-C2-C2-C2 Ig domain

structure (Pourquie et al., 1992). Its expression is

llb[3 lntegrin

For a long time, the IIb[3 integrin has been thought
to be specific for the megakaryocytic lineage (Naik
and Parise, 1997). Recently however, it was found
that this integrin is also present on hemopoietic pro-
genitors capable of differentiating into T cells and
into cells of the myeloid lineages (Ody et al., 1999).
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During embryogenesis IIb[3 positive progenitors
can be found as early as E3-4,5 in the para-aortic
region. Later on in development and in the adult this

integrin is coexpressed with c-kit on hemopoietic pro-
genitors in the bone marrow. Expression is lost upon
differentiation. In mice bearing a conditional cIIb
knockout transgene, suppression of IIb3 expres-
sion induces a severe reduction in the potential of
bone marrow cells to generate mixed colonies in CFU
assays and a marked thrombocytopenia (Tronik-Le
Roux et al., 1995). These results clearly indicate that
this molecule also plays a pivotal role in the develop-
ment of different hemopoietic lineages. The integrin
cIIb[3 binds to extracellular matrix molecules con-

taining the minimal amino acid sequence RGD with a

preference for fibrinogen as described with platelets
(Naik and Parise, 1997). Similar to other integrins, the

ligand binding depends on the previous activation of

cIIb[3 by an inside-out signal transduction pathway
(Pelletier et al., 1995). The exact role of cIIb[3 in

thymus homing and T-cell progenitors differentiation

remains to be determined.

ChT1

ChT1 is a transmembrane molecule well conserved

through evolution (DuPasquier and Chretien, 1996),
which belongs to the large ChT1 Ig supergene sub-

family with one V- and one C2 extracellular domain

(Katevuo et al., 1999). JAM, CRAM-1 and CTX are

related molecules (Aurrand-Lions, M. unpublished
data). It is expressed by hemopoietic progenitors in

the bone marrow during embryogenesis. It is present
on 90% of thymocytes and in the blood on recent

thymic emigrants. It is also expressed by splenic lym-
phocytes, which have recently rearranged their TCR
genes as indicated by their content in DNA circles

created by the c[ and y TCR gene rearrangements
(Kong et al., 1998). Treatment of thymic organ cul-
tures with anti-ChTl-antibodies, blocked T cell dif-

ferentiation at the level of the immature lymphocyte.
Present data suggest that this molecule is involved in

an early T cell differentiation step, preceding CD3,
CD4 and CD8 expression (Katevuo et al., 1999). The
time-restricted expression on recent thymic emigrants

is extremely useful allowing the selective study of
these naive T cells at any stage of embryogenesis or

in the adult (Kong et al., 1998).

MHC class II

In the c-kit positive population of the bone marrow,
the T-cell progenitors are restricted to the cells coex-

pressing the MHC class II beta chain molecule at their

surface (Ody, unpublished data, Fig 4). This popula-
tion is present in the embryo as well as in the young
adult, although at lower number in the latter. The fact
that the c-kit MHC class II double positive progeni-
tors are in the Rho (Rhodamine 123) high fraction

(Ody et al. in preparation) showed that they belong to

the less primitive progenitors already engaged in the
differentiation process. Indeed, Rho binds to mito-

chondrial membranes of metabolically active cells
(Johnson et al., 1980). Thus, Rho low cells are in a

resting state. After selection with the standard mark-
ers for murine HSC (hemopoietic stem cell), the long
term repopulating cells i.e. the most primitive HSC
are found in the Rho low fraction of the bone marrow,
whereas cells present in the Rho high fraction have a

time restricted repopulating ability (Spangrude et al.,
1995). Accordingly, all the c-kit MHC class II dou-
ble positive cells are found in the Rho high fraction of
the bone marrow. The expression of the MHC class II
beta chain molecule is lost when the progenitors dif-

ferentiate into CD4 CD8 double positive cells in the
thymic environment Ody et al. in preparation). The
role of this transmembrane protein in T cell migration
and maturation is not yet elucidated. Nevertheless, in
the MHC class II knockout mice (Gosgrove et al.,
1991), the disorganization of the CD4+cells in the

thymic architecture is an indication for a role of the
MHC class II molecule in T cell differentiation and

migration unrelated to T cell selection. Moreover in

vivo and in vitro studies performed on dogs (Hong et

al., 1995b), show that anti-MHC class II induces fail-

ure of autologous bone marrow transplant after lethal
irradiation treatment and prevents CFU-GM forma-
tion. This is accompanied by an increase in intracellu-
lar Ca++ but no change in the tyrosine
phosphorylation pattern is detected (Hong et al.,
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1995a). These results also suggest a more general role

of the MHC class II molecule in the regulation of

hemopoiesis, which appears to be completely unre-

lated to its role as a histocompatibility barrier (Deeg
and Huss, 1993).

CD44

The CD44 proteoglycan is a widely expressed cell

surface protein on leukocytes and endothelial cells

(Borland et al., 1998; Kincade et al., 1997). CD44
mediates cell adhesion mainly by its binding to

hyaluronic acid (HA), but it can also interact with

chondroitin 4- sulphated serglycin, sulphated prote-
oglycans and the extracellular matrix molecules, col-

lagen I and IV, laminin and fibronectin (Carter and

Wayner, 1988; Jalkanen and Jalkanen, 1992; Peach et

al., 1993; Stamenkovic et al., 1991). Mammalian

CD44 isoforms are encoded by a single gene, contain-

ing 19 or 20 exons (Stamenkovic et al., 1991). The
enormous structural diversity of CD44 arises from the

ability of cells to choose among a large number of

mRNA splice options and from further glycosylation
modifications. In the mouse, expression of CD44 by
pro T cells in the bone haarrow and the decrease in

thymocytes number following injection of anti-CD44

antibodies suggest that CD44 plays a role in thymus
homing (O’Neill, 1987; O’Neill, 1989; Spangrude and

Scollay, 1990; Suniara et al., 1999; Wu et al., 1991).
Thereby, the expression of CD44 by the thymic
endothelium (Horst et al., 1990) may also play a role.

Moreover, CD44 is involved in progenitor interaction

with the bone marrow stroma and in maturation of

lymphoid progenitors. Accordingly, in the embryonic
chicken bone marrow, CD44 is expressed by different

cell populations at different levels. Most of the CD44
/ c-kit double positive cells express CD44 at a high
level. (Fig. 4). On mature T cells, CD44 seems to be
involved in immune responses. It is the chondroitin 4-

sulphated serglycin-CD44 interaction that provides a

costimulatory signal to mouse cytotoxic lymphocytes
(Lesley et al., 1993; Miyake et al., 1990). The chon-
droitin 4-sulphated serglycin-CD44 interaction may
also be associated with MHC class II molecules. Such

interactions could stimulate class II-dependent allo-

genic and mitogenic T cell responses (Naujokas et al.,
1993; Toyama-Sorimachi and Miyasaka, 1994). Inter-
action between CD44 and MHC class II might also

play a role in the proliferation and/or differentiation

of T cell progenitors since both molecules are present
on these progenitors.

Podocalyxin-like protein Thrombomucin

The Podocalyxin-like protein is a 140 kDa transmem-

brahe sialomucin that was first identified as a marker

of podocytes in the Kidney and vascular endothelia

(Kershaw et al., 1997; Kershaw et al., 1995). The

core protein has an estimated molecular weight of 55
kDa and contains putative sites for N- and O-glyco-
sylation. Comparison of avian thrombomucin and

mammalian Podocalyxin-like sequences shows a high
degree of identity in the transmembrane and intracel-

lular domains with a lower degree of identity in the
extracellular domain (Kershaw et al., 1997; McNagny
et al., 1997). Comparison with protein data base
revealed structure and sequences similarities between

thrombomucin and CD34 (Mc Nagny 1997; Sassetti

1998). The Podocalyxin-like protein is expressed at

the basal side of podocytes in the glomeruli of the

kidney as well as on some vascular endothelia (Ker-
shaw et al., 1997; Kershaw et al., 1995). In addition,

the avian thrombomucin is expressed on hematopoi-
etic progenitors in the yolk sac and the bone marrow

as well as the thrombocytes (McNagny et al., 1997).
In the embryonic bone marrow, there is a c-kit inter-

mediate population, which is thrombomucin positive
(Fig. 4). The T cell potential of this population has not

yet been determined, but expression of thrombomucin
on chicken lymphoid cells including T-cell progeni-
tors has already been suggested (Lampisuo et al.,
1998; Lampisuo et al., 1999). Podocalyxin-like pro-
tein is a ligand of L-selectin and the purified protein is

able to support the tethering and rolling of lym-
phocytes under physiological flow conditions (Sas-
setti et al., 1998). This makes it a good candidate for

being a major player in the homing of T cell progeni-
tors to the thymus during embryogenesis and early
adult life.
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CONCLUSIONS

The molecules described above have been detected on
hemopoietic progenitors of birds and mammals. This
denotes a high conservation through evolution, which
could be linked to fundamental functions of these
molecules. Though the immune system is very well
conserved from birds to mammals, there appear to be
additional and perhaps functionally less critical mole-
cules, which are found exclusively in mammals. For
instance, ChT1 was first cloned in xenopus

(DuPasquier and Chretien, 1996), then independently
in chicken (Katevuo et al., 1999) and finally, related
molecules have been identified in mouse and human
(Aurrand-Lions M. submitted and in preparation). In
contrast, PECAM, an adhesion molecule present on

platelets, endothelial cells, most leukocytes (DeLisser
et al., 1993) and on hemopoietic progenitors (Ling et

al., 1997), has only been identified in higher mam-
mals and has not been found so far in chicken in spite
of many attempts. This finding is consistent with the
apparent functional redundancy of PECAM-1 demon-
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strated by the absence of any major hemopoietic dis-
order in the PECAM knockout mice (Duncan et al.,
1999). On the other hand, the integrin odIb3 and
c-kit, which are highly conserved through evolution

certainly play fundamental roles in the hemopoietic
system. This is shown by the dramatic effects result-
ing from mutagenesis (Morrison-Graham and Taka-
hashi, 1993), gene deletion (Tronik-Le Roux et al.,
1995) or antibody treatment (Berridge et al., 1985).
Thus avian system is very useful for the evaluation of
unknown molecules as a bridge between organisms
distant in the evolutionary tree. The avian model can
also help in the understanding of the different mecha-
nisms underlying hemopoiesis. For instance, the pres-
ence of HEMCAM on hemopoietic progenitors has
been identified thanks to work performed on the
chicken (Vainio et al., 1996), whereas its earlier iden-
tification in human was related to melanoma progres-
sion (Lehmann et al., 1989). Thus characterization of
cell surface molecules expressed on T cell progenitors
in birds and mammals are complementary and might
help to improve our knowledge of the fundamental
molecules involved in T cell migration, thymus hom-
ing and T cell differentiation.
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